12-22 North

An Internet of Things lab, testbed, and proving ground

Taking Back Control:

Building Resiliency through HVAC controls and the Industrial Internet of Things

AJ Rossman

12-22 Narth

Proworking - Stay Safe and Connected

Learn more: www.12-22North.com

An Internet of Things Lab, Testbed, and Proving Ground

Learn more: www.IoTConduit.com

"For a commercial building owner, 'building resilience' can be defined as the ability to protect, maintain, or restore the functionality of, value of, and income generated by a building after a damaging event or circumstance within a prescribed time frame"

Development of a Tool for Assessing Commercial Building Resilience (2017)

What does that mean for Commercial Buildings in 2021?

- Renting space in a COVID-19 environment
- Improving air quality without breaking the bank
- Responding to extreme weather events

Challenge 1 - COVID-19

12-22 North

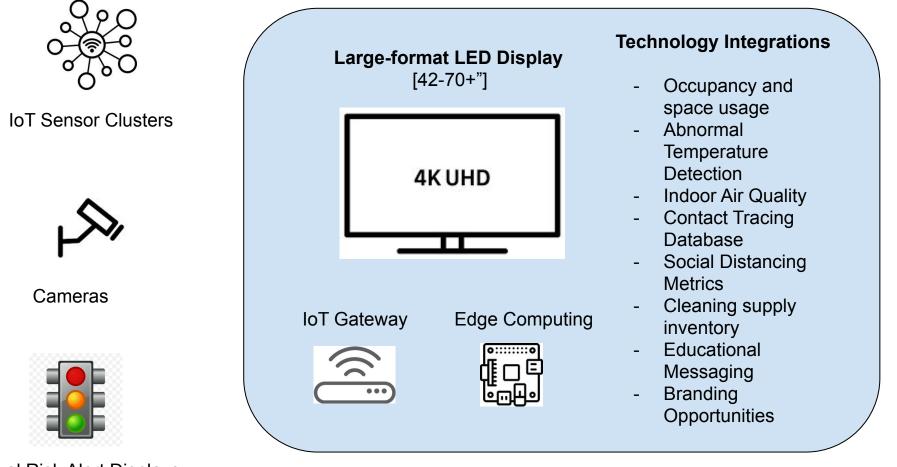
An Internet of Things lab, testbed, and proving ground

Challenge 1 - Loss of Tenants Due to Pandemic

12-22 Narth Pandemic Timeline

March 2020 - State of Vermont Executive Order shut down public spaces. Strict requirements put into place.

April 2020 - Health and Safety Plan implemented using WordPress. Started discussions with Infiense, StreamLogic and Healthy Kingdom on how to adapt their building models to re-open building faster.


May 2020 - Installed camera in side lot Food Alley for StreamLogic. Healthy Kingdom opens Smoothie stand in lot. Sensors ordered from InfiSense. SteamLogic deploys and calibrates HealthWatch at Food Alley.

June 2020 - InfiSense provisioned 10 Smart Room Sensors and deployment design. StreamLogic refines HealthWatch and shares initial statistics. Healthy Kingdom ponders how to integrate his IoT Technology vision

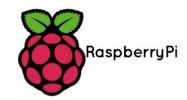
July - August 2020 - Integrate all technologies into 12-22 North web portal

September 2020 - Re-opening to new tenants

Coronavirus Safety Station Concept

Visual Risk Alert Displays

Coronavirus Safety Station Technologies

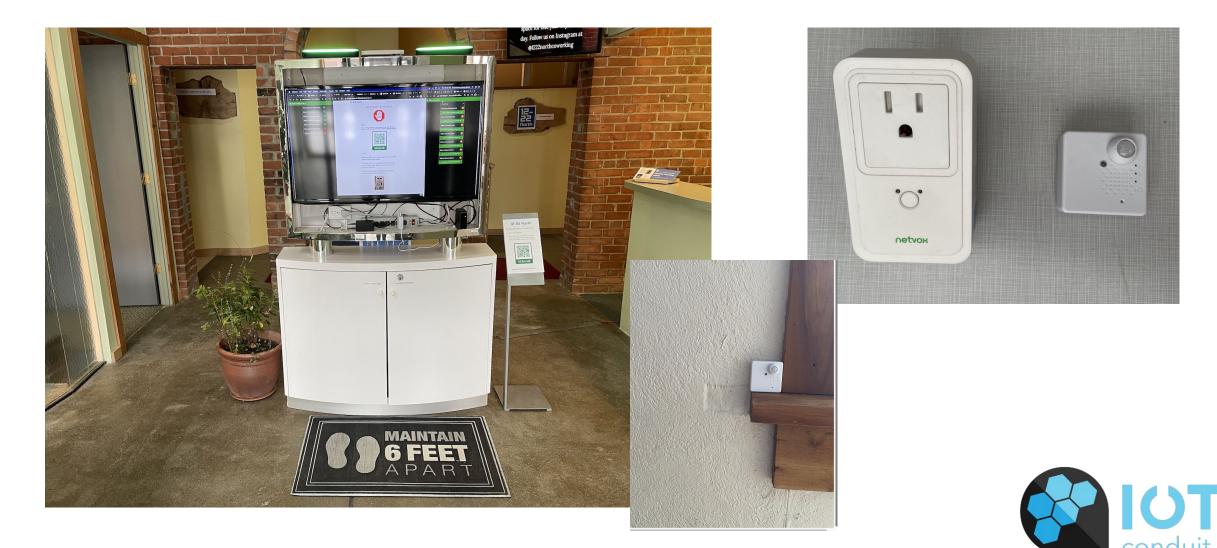


Visual Risk Alert Displays

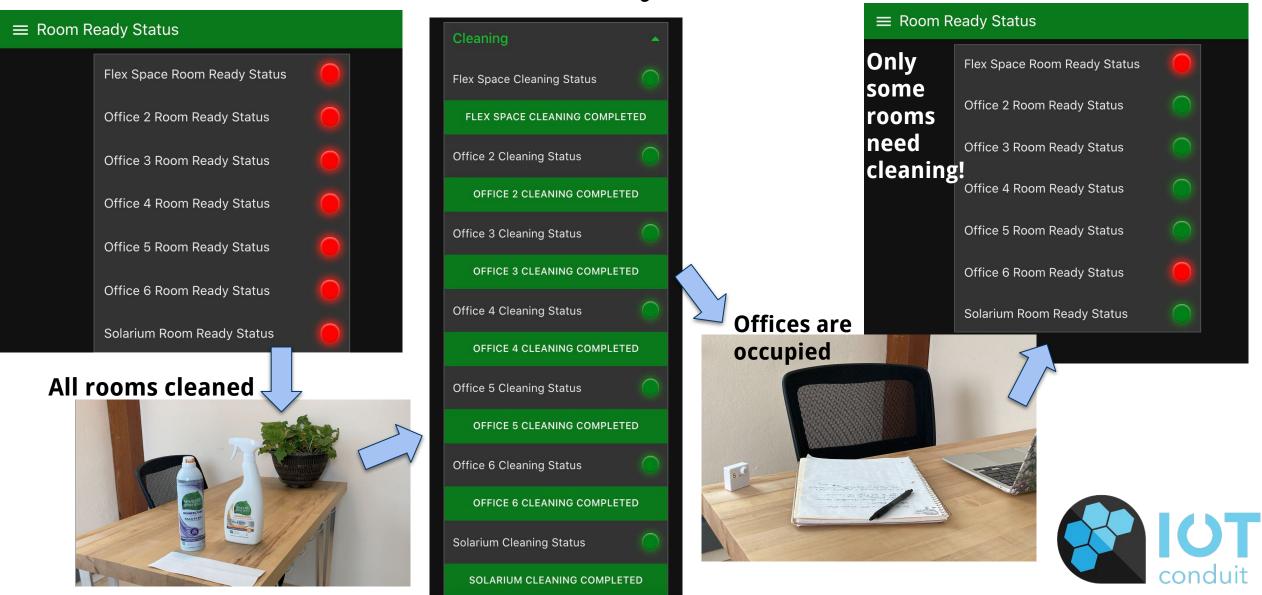
Fresh Air Controls

Edge Computing

IoT Sensor Clusters


Weather Stations **stream**logic

Camera AI



Independent Datalayer

Coronavirus Safety Station Implementation

Coronavirus Safety Station Demo

Challenge 2 - Air Quality

12-22 North

An Internet of Things lab, testbed, and proving ground

Challenge 2 - Indoor Air Quality

Step 1 - Hire a Professional for Focus

Building Evaluation Report

Risks...

According to the OSHA Occupational Risk Pyramid classification for COVID-19 per OSHA publication 3990: Guidance on Preparing Workplaces for COVID-19 [1], the exposure risk level for the current and likely prospective tenants at 12-22 North Street is "Lower Exposure Risk" for most IoT Conduit activities, or "Medium Exposure Risk" considering Laboratory B activities which include public-facing events.

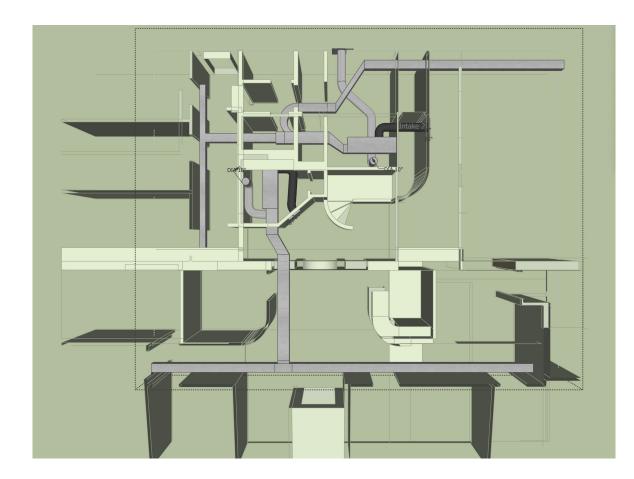
Recommendations...

While the OSHA guidelines for Lower and Medium Risk spaces do not explicitly recommend 'Engineering Controls' beyond physical barriers such as Plexiglas,1 the CDC website on COVID-19 Employer Information for

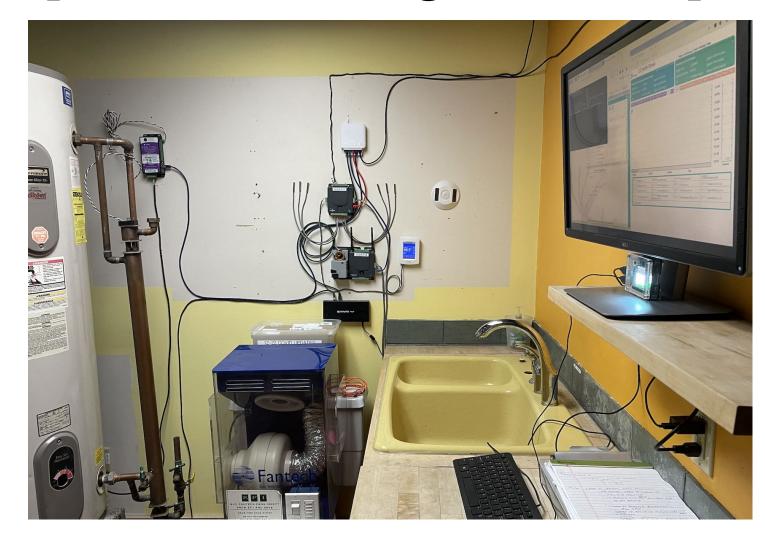
Office Buildings [2] is clear about HVAC system recommendations based on ASHRAE guidance. These can be summarized as:

- Ensure adequate ventilation air volume
- Disable demand-control ventilation (DCV) which could reduce ventilation air volume
- Improve air filtration with portable HEPA filters and ultraviolet germicidal irradiation (UVGI) units
- Ensure less clean air is properly exhausted

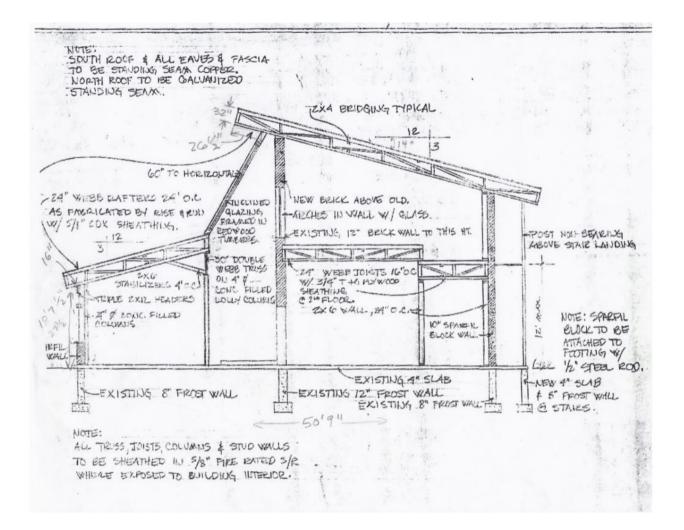
Action Items...


Since most of the administrative and basic hygiene controls are already in place at 12-22 Pro-Working, the HVAC system recommendations should be the primary focus for isolating occupants from COVID-19 hazards.2 The existing 12-22 North Street HVAC systems include an air-cooled cold-climate heat pump for heating and cooling, and a gas-fired central air handler with ducted supply and return. The following action items are recommended:

1. Improve ventilation in the building in consultation with an HVAC professional [2]. This includes:


Report by Emily Cross, The Evaluators

Existing Infrastructure - No Outside Air


Step 2 - Make Changes and Adapt Controls

- Added schedule for fresh-air ventilation
- Integration in process to bring in real-time measurements using IoT

Step 3 - Measurement & Verification [TBD]

Step 4 - Report Building Safety Status to Tenants

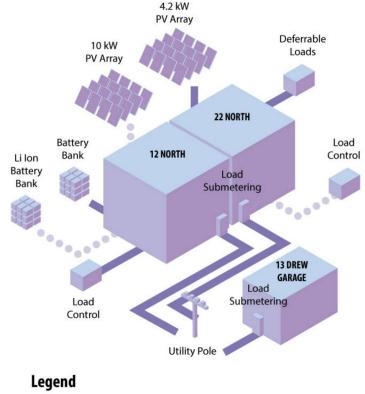
- Ventilation Update

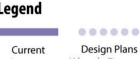
In order to comply with updated ventilation requirements for buildings, 12-22 North has been taking steps to **upgrade our ventilation systems** to allow for more fresh air intake and outflow of air. We have actively been monitoring and increasing our **indoor air quality** to ensure indoor protection from the virus.

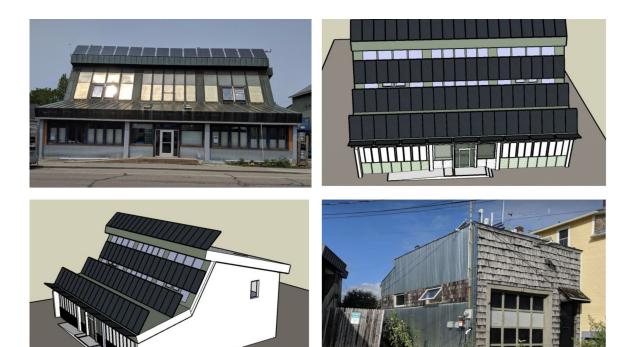
Challenge 3 - Extreme Weather

12-22 North

An Internet of Things lab, testbed, and proving ground

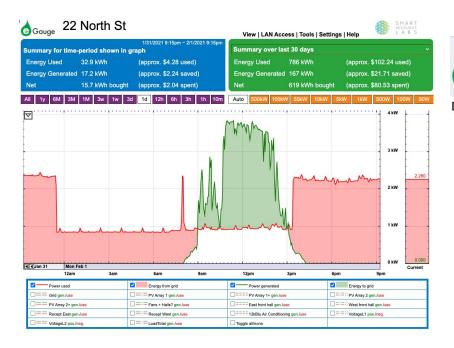

Challenge 3 - Mitigating Extreme Weather





Challenge 3 - Microgrid Design

12-22 NORTH Microgrid Layout



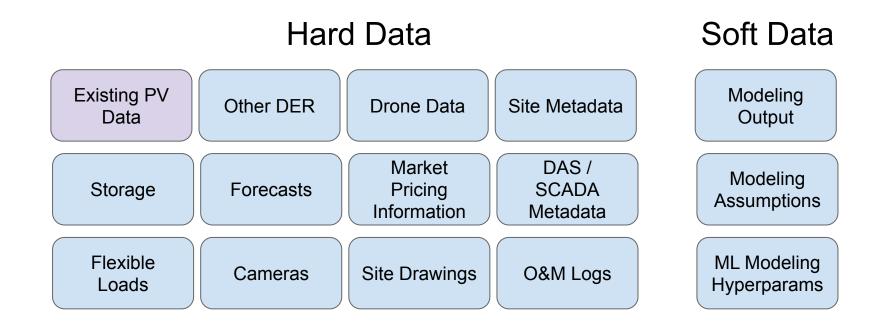
Challenge 3 - Microgrid Power Design

¹: Ending 09:16pm Feb 1, 2021. ²: Starting 03:30pm Dec 4, 2011.

Step 1 - Submeter for Granular Load Profiling

	aug	е	Statis		Ener		2 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	9 <u>s Hel</u> ~	p		3	reso L A	URCE B S
mo	nuny s	summa	ary ior	. 1018		gy Use		_					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2021	801	271	-	-	-	-	-		-		-		828
2020	928	870	777	587	573	605	479	520	538	681	777	907	8242
2019	211	512	575	475	495	630	971	1088	583	653	639	960	7791
2018	469	404	429	398	496	470	382	402	417	428	429	352	5077
2017	782	636	839	411	461	705	1057	973	568	448	434	469	7783
2016	513	472	530	518	465	582	777	523	361	301	283	495	5820
2015	285	263	331	313	332	484	647	416	427	390	428	425	4742
2014	398	288	336	346	441	833	1016	896	444	272	233	277	5779
2013	336	266	245	256	277	473	1033	1057	597	514	316	404	5774
2012	0	0	0	0	0	0	94	480	258	128	213	215	1387
2011			-	-	-		-		-	-	-	02	0

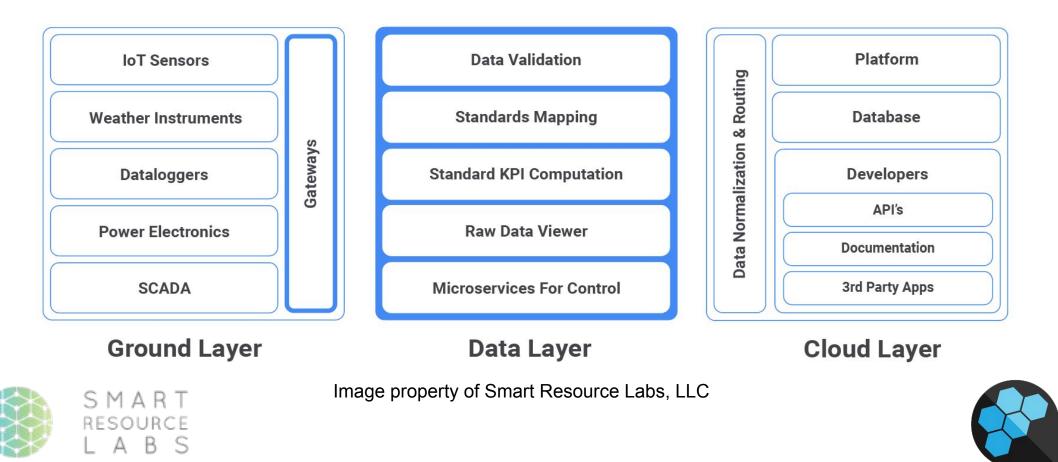
• Critical Loads


- Heating system (controls, pumps)
- IT Network
- NOC Center
- Deferrable / Sheddable Loads
 Water heater

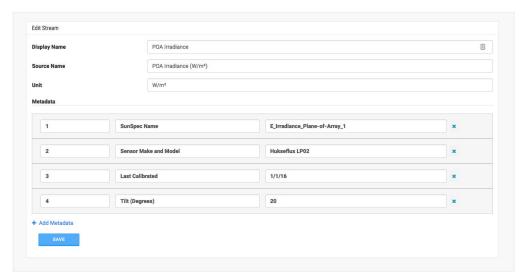
Use an IIoT BMS to Verify Assumptions for Sizing Storage Capacity

Challenge 3 - Microgrid Power Design

Step 2 - Integrate Independent DataLayer for System Interoperability



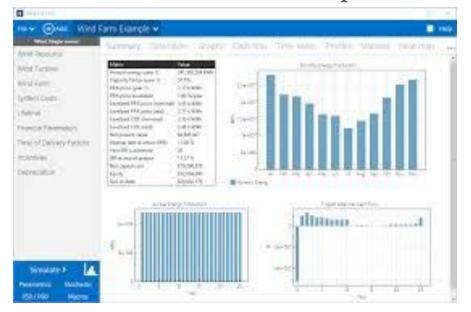
Challenge 3 - Microgrid Power Design


Step 2 - Integrate Independent DataLayer for System Interoperability

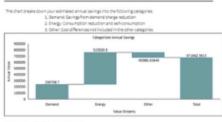
Challenge 3 - Microgrid Power Design

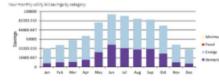
Step 2 - Integrate Independent DataLayer for System InteroperabilityDevice CommissioningMetadata Management

Device Infor	mation										
Location	ocation Cell Air Compressor Test			Drew St Ga	arage	Device Name		Cel	l eGauge tester 23111	Device ID	
Hostnam	e 🗆	CellT	Test		Serial Numbe	r 🖸			MAC Address		
IP Addres	ss 🗇	192.	168.1.88		Confirm Date & Time						
Voltages		eGauge		Measured							
L1											
L2											
L3											
Channel	CT Label		Ω	eGauge Reading (A	Amp-clamp Reading (A)	Power Facto		Notes			
1	Ch.	Ch.1 240 V Test Circuit -L1									
2	Ch.2 240 V Test Circuit -L2										
3	Ch.3 Air Compressor -L1										
4	Ch.4 Mains -L1										
5	Ch.5 Mains -L2										
6	Ch.	6 Spo	tlight -L1								
			1								

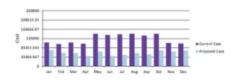


Challenge 3 - Microgrid Power Design


Step 3 - System Design and Simulation [FUTURE]


NREL SAM + ReOpt

Savings Summary

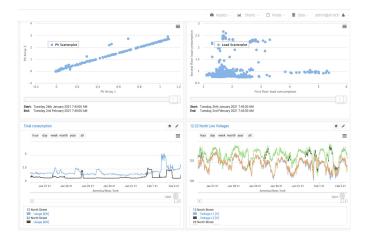

Savings Details (continued)

UTILITY BILL SAVINGS

The feeling at 2402-1400 Thurburn Ave, Bakenfield, CA 00011, USA (00122-11), 132711 (11) is served by Pecific Gas & Effective Co. The electricity calify plan you are currently on is the usage General – Time of Use-No. 929.

Your monthly electricity bill has two main parts

Congr. Unseque-fronte stata amout of electricity you we behaved on appen-fronte stata amout of electricity who this area is to of power-sour short periods, your mend oblegate will comprise a larger part of your bit if, you can power at a more combined room ampoint the more, you chemand transper of periodic periodic periodic and an oblegate the your bit. Dereved anges mile up a significant posterior of commercial and industrial customerk total electricity costs study, between 20 and 10 fbs.


Use an IIoT BMS to Properly Size Storage Capacity

Challenge 3 - Microgrid Power Design

Step 4 - Optimize Operations [FUTURE]

streamViewer

MBCx

Control Optimization

AJ Rossman Managing Director (802) 503- 5523 aj@iotconduit.com

For more information please visit www.loTConduit.com